Ostatnim aksjomatem jest aksjomat wyboru. Jest to aksjomat, który wywołał dużą liczbę kontrowersji. Wielu znakomitych matematyków początku XX wieku uważało, że nie należy go dopuścić do zestawu podstawowych aksjomatów. W chwili obecnej większość matematyków uważa, że aksjomat wyboru jest prawdziwy, nawet jeśli jego konsekwencje są bardzo nieintuicyjne. System aksjomatów przedstawionych powyżej oznaczamy przez ZF -- skrót pochodzący od pierwszych liter nazwisk jego twórców. Zestaw aksjomatów z przedstawionym poniżej aksjomatem wyboru oznaczamy przez ZFC, gdzie C jest symbolicznym zapisem dodatkowego aksjomatu (Axiom of Choice). Prezentujemy poniżej jedną z wielu równoważnych postaci aksjomatu.
Aksjomat Wyboru. Następująca formuła jest prawdziwa:
\( \forall x\ ( \emptyset\notin x\land \forall y\forall z\ (z\in x\land y\in x) \Longrightarrow (z=y \lor z\cap y = \emptyset))\Longrightarrow \exists w \forall v\ (v \in x \Longrightarrow \exists u\ v\cap w=\{u\}) \)
Aksjomat wyboru mówi, że jeśli \( x \) jest zbiorem nie zawierającym zbioru pustego oraz takim, że każde dwa jego elementy są rozłączne, to istnieje zbiór \( w \), który z każdym z elementów \( x \) ma dokładnie jeden element wspólny. Intuicyjnie znaczy to, że mając rodzinę rozłącznych zbiorów, możemy stworzyć zbiór, wybierając po jednym elemencie z każdego zbioru.
Własność gwarantowana przez aksjomat wyboru może wydawać się intuicyjnie oczywista. Niestety konsekwencje, jakie pociąga za sobą przyjęcie tego aksjomatu, zniechęciły wielu matematyków. Jedną z konsekwencji aksjomatu wyboru jest twierdzenie znane jako Paradoks Banacha-Tarskiego - nie jest to sprzeczność logiczna jak paradoks Bertrandta Russella, a jedynie bardzo nieintuicyjny fakt. Twierdzenie to mówi, że trójwymiarową kulę można podzielić na sześć części, z których, za pomocą obrotów i translacji, da się skonstruować dwie kule identyczne z tą pierwszą.