In this lecture we assume that there are no function symbols in the signature.
Quantifier rank of a formula

$QR(\varphi)$ is defined as follows:

$QR(\varphi \rightarrow \psi) = \max\left(QR(\varphi), QR(\psi)\right)$

$QR(\forall x \varphi) = 1 + QR(\varphi)$
Quantifier rank of a formula

$QR(\varphi)$ is defined as follows:

- $QR(\bot) = QR(t_1 = t_2) = QR(r(t_1, \ldots, t_n)) = 0$ for terms t_1, \ldots, t_n and $r \in \Sigma_n^R$.

$QR(\varphi \to \psi) = \max(QR(\varphi), QR(\psi))$.

$QR(\forall x \varphi) = 1 + QR(\varphi)$.
Quantifier rank of a formula

$QR(\varphi)$ is defined as follows:

- $QR(\bot) = QR(t_1 = t_2) = QR(r(t_1, \ldots, t_n)) = 0$ for terms t_1, \ldots, t_n and $r \in \Sigma^R_n$.
- $QR(\varphi \rightarrow \psi) = \max(QR(\varphi), QR(\psi))$.

Formally: QR is the nesting depth of quantifiers in the formula.
Quantifier rank of a formula

$QR(\varphi)$ is defined as follows:

- $QR(\bot) = QR(t_1 = t_2) = QR(r(t_1, \ldots, t_n)) = 0$ for terms t_1, \ldots, t_n and $r \in \Sigma_n^R$.
- $QR(\varphi \rightarrow \psi) = \max(QR(\varphi), QR(\psi))$.
- $QR(\forall x \varphi) = 1 + QR(\varphi)$.
Quantifier rank of a formula

$QR(\varphi)$ is defined as follows:

- $QR(\bot) = QR(t_1 = t_2) = QR(r(t_1, \ldots, t_n)) = 0$ for terms t_1, \ldots, t_n and $r \in \Sigma^n_R$.
- $QR(\varphi \to \psi) = \max(QR(\varphi), QR(\psi))$.
- $QR(\forall x \varphi) = 1 + QR(\varphi)$.

Informally: QR is the nesting depth of quantifiers in the formula.
Let \mathcal{A} be a relational structure
Let $\emptyset \neq B \subseteq A$.
Let \mathfrak{A} be a relational structure.
Let $\emptyset \neq B \subseteq A$.
Then $\mathfrak{A}|_B$ is a structure over the signature Σ of \mathfrak{A}:
Let \mathcal{A} be a relational structure
Let $\emptyset \neq B \subseteq A$.
Then $\mathcal{A}|_B$ is a structure over the signature Σ of \mathcal{A}:
- the universe of $\mathcal{A}|_B$ is B
Let \mathcal{A} be a relational structure.
Let $\emptyset \neq B \subseteq A$.
Then \mathcal{A}_B is a structure over the signature Σ of \mathcal{A}:
- the universe of \mathcal{A}_B is B
- for $r \in \Sigma^R$ we define $r_{\mathcal{A}_B} := r_{\mathcal{A}} \cap B^n$.
A, B – relational structures over Σ.
Nonempty subsets $A' \subseteq A$ and $B' \subseteq B$.
\(\mathfrak{A}, \mathfrak{B} \) – relational structures over \(\Sigma \).

Nonempty subsets \(A' \subseteq A \) and \(B' \subseteq B \).

An isomorphism \(h : \mathfrak{A}_{|A'} \cong \mathfrak{B}_{|B'} \) of induced substructures is called a \underline{partial isomorphism} from \(\mathfrak{A} \) to \(\mathfrak{B} \).
Partial isomorphism

\[A, B \] – relational structures over \(\Sigma \).

Nonempty subsets \(A' \subseteq A \) and \(B' \subseteq B \).

An isomorphism \(h : A|_A' \cong B|_{B'} \) of induced substructures is called a partial isomorphism from \(A \) to \(B \).

Its domain is \(\text{dom}(h) = A' \), and range is \(\text{rg}(h) = B' \).
We adopt the convention that \emptyset is a partial isomorphism from \mathcal{A} to \mathcal{B} with empty domain and range.
We adopt the convention that \emptyset is a partial isomorphism from \mathcal{A} to \mathcal{B} with empty domain and range.

For two partial isomorphisms g, h from \mathcal{A} to \mathcal{B} we write $g \subseteq h$ when $\text{dom}(g) \subseteq \text{dom}(h)$ and $g(a) = h(a)$ for all $a \in \text{dom}(g)$; alternatively, when g is included in h as a set.
Let \(m \in \mathbb{N} \).

Structures \(\mathcal{A} \) and \(\mathcal{B} \) are \(m \)-isomorphic (denoted \(\mathcal{A} \cong_m \mathcal{B} \)), if there exists a family \(\{ I_n \mid n \leq m \} \) such that:

1. Each \(I_n \) is a nonempty set of partial isomorphisms from \(\mathcal{A} \) to \(\mathcal{B} \).
2. For each \(h \in I_{n+1} \) and each \(b \in \mathcal{B} \), there exists \(g \in I_n \) such that \(h \subseteq g \) and \(b \in \text{rg}(g) \).
3. For each \(h \in I_{n+1} \) and each \(a \in \mathcal{A} \), there exists \(g \in I_n \) such that \(h \subseteq g \) and \(a \in \text{dom}(g) \).
Let $m \in \mathbb{N}$.

Structures A and B are m-isomorphic (denoted $A \cong_m B$), if there exists a family $\{I_n \mid n \leq m\}$ such that:

1. **Iso** Each I_n is a nonempty set of partial isomorphisms from A to B
Let $m \in \mathbb{N}$.

Structures \mathcal{A} and \mathcal{B} are m-isomorphic (denoted $\mathcal{A} \cong_m \mathcal{B}$), if there exists a family $\{I_n \mid n \leq m\}$ such that:

- **Iso** Each I_n is a nonempty set of partial isomorphisms from \mathcal{A} to \mathcal{B}
- **Back** For each $h \in I_{n+1}$ and each $b \in B$ there exists $g \in I_n$ such that $h \subseteq g$ and $b \in \text{rg}(g)$.
Let $m \in \mathbb{N}$.

Structures A and B are m-isomorphic (denoted $A \cong_m B$), if there exists a family $\{I_n \mid n \leq m\}$ such that:

- **Iso** Each I_n is a nonempty set of partial isomorphisms from A to B.

- **Back** For each $h \in I_{n+1}$ and each $b \in B$ there exists $g \in I_n$ such that $h \subseteq g$ and $b \in rg(g)$.

- **Forth** For each $h \in I_{n+1}$ and each $a \in A$ there exists $g \in I_n$ such that $h \subseteq g$ and $a \in dom(g)$.
Let \(m \in \mathbb{N} \).

Structures \(\mathcal{A} \) and \(\mathcal{B} \) are \(m \)-isomorphic (denoted \(\mathcal{A} \cong_m \mathcal{B} \)), if there exists a family \(\{I_n \mid n \leq m\} \) such that:

1. **Iso** Each \(I_n \) is a nonempty set of partial isomorphisms from \(\mathcal{A} \) to \(\mathcal{B} \).
2. **Back** For each \(h \in I_{n+1} \) and each \(b \in B \) there exists \(g \in I_n \) such that \(h \subseteq g \) and \(b \in rg(g) \).
3. **Forth** For each \(h \in I_{n+1} \) and each \(a \in A \) there exists \(g \in I_n \) such that \(h \subseteq g \) and \(a \in \text{dom}(g) \).

The family \(\{I_n \mid n \leq m\} \) is called an \(m \)-isomorphism of \(\mathcal{A} \) and \(\mathcal{B} \), denoted \(\{I_n \mid n \leq m\} : \mathcal{A} \cong_m \mathcal{B} \).
Finite isomorphism

Two structures \(A, B \) are finitely isomorphic, (denoted \(A \cong_{\text{fin}} B \)) if there exists a family \(\{ I_n \mid n \in \mathbb{N} \} \), whose each subfamily \(\{ I_n \mid n \leq m \} \) is an \(m \)-isomorphism.
Finite isomorphism

Two structures \mathcal{A}, \mathcal{B} are **finitely isomorphic**, (denoted $\mathcal{A} \cong_{\text{fin}} \mathcal{B}$) if there exists a family $\{I_n \mid n \in \mathbb{N}\}$, whose each subfamily $\{I_n \mid n \leq m\}$ is an m-isomorphism.

If $\{I_n \mid n \leq m\}$ has the above property, we write $\{I_n \mid n \leq \mathbb{N}\} : \mathcal{A} \cong_{\text{fin}} \mathcal{B}$

This family is called a **finite isomorphism**.
Finite isomorphism

Fakt
Finite isomorphism

Fakt

If $A \cong B$, then $A \cong_{\text{fin}} B$.
Finite isomorphism

Fakt

- If $A \cong B$, then $A \cong_{fin} B$.
- If $A \cong_{fin} B$ and the universe A of A is finite, then $A \cong B$.
Proof: See blackboard.
Elementary equivalence

Repetitio est mater studiorum

A and B are elementary equivalent (denoted \(A \equiv B \)), if for each sentence \(\varphi \) of first-order logic
\(A \models \varphi \) iff \(B \models \varphi \).
Repetitio est mater studiorum

A and B are elementary equivalent (denoted $A \equiv B$), if for each sentence φ of first-order logic

$A \models \varphi$ iff $B \models \varphi$.

A and B are m-elementary equivalent (denoted $A \equiv_m B$), if for each sentence φ of quantifier rank at most m holds

$A \models \varphi$ iff $B \models \varphi$.
Fact

$\mathcal{A} \cong_{fin} \mathcal{B}$ if and only if for every natural m holds $\mathcal{A} \equiv_m \mathcal{B}$.
Fact

$\mathcal{A} \cong_{fin} \mathcal{B}$ if and only if for every natural m holds $\mathcal{A} \cong_m \mathcal{B}$.

Proof:

Suppose that for each m there exists $\{l^m_n \mid n \leq m\}$ as in the definition of \cong_m.

The family $\{J_n \mid n \in \mathbb{N}\}$ defined by

$$J_n = \bigcup_{m \in \mathbb{N}} l^m_n$$

satisfies the definition of \cong_{fin}.
Theorem [Fraïssé]
Let Σ by a finite relational signature;
Let \mathcal{A}, \mathcal{B} be structures over Σ.
Theorem [Fraïssé]
Let Σ be a finite relational signature;
Let \mathcal{A}, \mathcal{B} be structures over Σ.

For each $m \in \mathbb{N}$:
$\mathcal{A} \cong_m \mathcal{B}$ if and only if $\mathcal{A} \equiv_m \mathcal{B}$.
Theorem [Fraïssé]
Let Σ by a finite relational signature; Let \mathcal{A}, \mathcal{B} be structures over Σ.

- For each $m \in \mathbb{N}$:
 $\mathcal{A} \cong_m \mathcal{B}$ if and only if $\mathcal{A} \equiv_m \mathcal{B}$.
- $\mathcal{A} \cong_{fin} \mathcal{B}$ if and only if $\mathcal{A} \equiv \mathcal{B}$.
Theorem 1 (Fraïssé’s Theorem). The second equivalence follows from the first one. We prove the first one from left to right.
The second equivalence follows from the first one.
The second equivalence follows from the first one. We prove the first one from left to right.
Proof of Fraïssé’s Theorem

The second equivalence follows from the first one. We prove the first one from left to right. We fix $m \in \mathcal{N}$.
Induction thesis

Let

\[\{ I_n | n \leq m \} : A \sim = m \]

\(g \in I_n \)

\(\phi \) is a formula

\(FV(\phi) = x_1, \ldots, x_r \)

\(QR(\phi) \leq n \leq m \)

The following are equivalent:

\[A, x_1 : a_1, \ldots, x_r : a_r \mid = \phi \]

\[B, x_1 : g(a_1), \ldots, x_r : g(a_r) \mid = \phi. \]
Let

\[\{ l_n \mid n \leq m \} : A \cong_m B \]
Induction thesis

Let

- \{l_n \mid n \leq m\} : \mathcal{A} \cong_m \mathcal{B}
- g \in l_n
Let

- \(\{ l_n \mid n \leq m \} : \mathcal{A} \cong_m \mathcal{B} \)
- \(g \in l_n \)
- \(\varphi \) be a formula
Let

- \(\{ l_n \mid n \leq m \} : A \cong_m B \)
- \(g \in l_n \)
- \(\varphi \) be a formula
 - \(\text{FV}(\varphi) = x_1, \ldots, x_r \)
 - \(\text{QR}(\varphi) \leq n \leq m \)
Let

- \(\{ I_n \mid n \leq m \} : \mathcal{A} \cong_m \mathcal{B} \)
- \(g \in I_n \)
- \(\varphi \) be a formula
 - \(FV(\varphi) = x_1, \ldots, x_r \)
 - \(QR(\varphi) \leq n \leq m \)

The for each \(a_1, \ldots, a_r \in \text{dom}(g) \) the following are equivalent:

\[
\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r \models \varphi
\]

\[
\mathcal{B}, x_1 : g(a_1), \ldots, x_r : g(a_r) \models \varphi.
\]
Induction

For atomic formulas the thesis follows from the fact that g is a partial isomorphism. If $\phi \rightarrow \psi \rightarrow \xi$, then the following are equivalent:

$\begin{align*}
A, x_1: a_1, \ldots, x_r: a_r | = \psi \rightarrow \xi & \quad \text{or} \quad A, x_1: a_1, \ldots, x_r: a_r \not| = \psi \\
B, x_1: g(a_1), \ldots, x_r: g(a_r) | = \psi \rightarrow \xi & \quad \text{or} \quad B, x_1: g(a_1), \ldots, x_r: g(a_r) \not| = \psi
\end{align*}$
For atomic formulas the thesis follows from the fact that g is a partial isomorphism
Induction

- For atomic formulas, the thesis follows from the fact that g is a partial isomorphism.
- If φ is $\psi \rightarrow \xi$, then the following are equivalent:
For atomic formula ϕ the thesis follows from the fact that g is a partial isomorphism.

If ϕ is $\psi \rightarrow \xi$, then the following are equivalent:

- $\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r \models \psi \rightarrow \xi$
For atomic formulas the thesis follows from the fact that g is a partial isomorphism.

If φ is $\psi \rightarrow \xi$, then the following are equivalent:

- $\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r \models \psi \rightarrow \xi$
- $\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r \not\models \psi$ or
 - $\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r \models \xi$
For atomic formulae, the thesis follows from the fact that g is a partial isomorphism.

If φ is $\psi \to \xi$, then the following are equivalent:

- $\mathcal{A}, x_1: a_1, \ldots, x_r: a_r \models \psi \to \xi$
- $\mathcal{A}, x_1: a_1, \ldots, x_r: a_r \not\models \psi$ or $\mathcal{A}, x_1: a_1, \ldots, x_r: a_r \models \xi$
- $\mathcal{B}, x_1: g(a_1), \ldots, x_r: g(a_r) \not\models \psi$ or $\mathcal{B}, x_1: g(a_1), \ldots, x_r: g(a_r) \models \xi$
For atomic formulas the thesis follows from the fact that g is a partial isomorphism.

If φ is $\psi \rightarrow \xi$, then the following are equivalent:

- $\mathcal{A}, x_1: a_1, \ldots, x_r: a_r \models \psi \rightarrow \xi$
- $\mathcal{A}, x_1: a_1, \ldots, x_r: a_r \not\models \psi$ or
 $\mathcal{A}, x_1: a_1, \ldots, x_r: a_r \models \xi$
- $\mathcal{B}, x_1: g(a_1), \ldots, x_r: g(a_r) \not\models \psi$ or
 $\mathcal{B}, x_1: g(a_1), \ldots, x_r: g(a_r) \models \xi$
- $\mathcal{B}, x_1: g(a_1), \ldots, x_r: g(a_r) \models \psi \rightarrow \xi$
Let \(\varphi \) be \(\forall x_r + 1 \psi \).

By assumption, \(\text{QR} (\varphi) \leq n \), we get \(\text{QR} (\psi) \leq n - 1 \).

The following are equivalent:

\((A, x_1 : a_1, \ldots, x_r : a_r) | = \varphi \)

For all \(a \in A \) holds

\((A, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) | = \psi \)

For all \(a \in A \) there exists \(h \in I \) so that \(g \subseteq h \), \(a \in \text{dom} (h) \) and

\((B, x_1 : g(a_1), \ldots, x_r : g(a_r), x_{r+1} : h(a)) | = \psi \)

For all \(b \in B \) holds

\((B, x_1 : g(a_1), \ldots, x_r : g(a_r), x_{r+1} : b) | = \psi \)
Let φ be $\forall x_{r+1} \psi$
Let φ be $\forall x_{r+1} \psi$

By assumption $QR(\varphi) \leq n$ we get $QR(\psi) \leq n - 1$.

The following are equivalent:

$(A, x_1): a_1, \ldots, x_r: a_r)$

For all $a \in A$ holds $(A, x_1): a_1, \ldots, x_r: a_r, x_{r+1}: a)$

For all $a \in A$ there exists $h \in I_{n-1}$ so that $g \subseteq h$, $a \in \text{dom}(h)$ and $(A, x_1): a_1, \ldots, x_r: a_r, x_{r+1}: h(a))$

For all $b \in B$ there exists $h \in I_{n-1}$ so that $g \subseteq h$, $b \in \text{rg}(h)$ and $(B, x_1): g(a_1), \ldots, x_r: g(a_r), x_{r+1}: h(b))$
Let \(\varphi \) be \(\forall x_{r+1} \psi \).

By assumption, \(QR(\varphi) \leq n \) we get \(QR(\psi) \leq n - 1 \).

The following are equivalent:

- \((\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r) \models \varphi \)
Let φ be $\forall x_{r+1} \psi$

By assumption $QR(\varphi) \leq n$ we get $QR(\psi) \leq n - 1$.

The following are equivalent:

- $(\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r) \models \varphi$
- For all $a \in A$ holds $(\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) \models \psi$
• Let φ be $\forall x_{r+1} \psi$

• By assumption $QR(\varphi) \leq n$ we get $QR(\psi) \leq n − 1$.

• The following are equivalent:

 • $(\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r) \models \varphi$
 • For all $a \in A$ holds $(\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) \models \psi$
 • For all $a \in A$ there exists $h \in I_{n−1}$ so that $g \subseteq h$, $a \in \text{dom}(h)$ and

 $(\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) \models \psi$
Let φ be $\forall x_{r+1} \psi$

By assumption $QR(\varphi) \leq n$ we get $QR(\psi) \leq n - 1$.

The following are equivalent:

1. $(\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r) \models \varphi$
2. For all $a \in A$ holds $(\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) \models \psi$
3. For all $a \in A$ there exists $h \in l_{n-1}$ so that $g \subseteq h$, $a \in \text{dom}(h)$ and $(\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) \models \psi$
4. For all $a \in A$ there exists $h \in l_{n-1}$ so that $g \subseteq h$, $a \in \text{dom}(h)$ and $(\mathcal{B}, x_1 : g(a_1), \ldots, x_r : g(a_r), x_{r+1} : h(a)) \models \psi$
Let φ be $\forall x_{r+1} \psi$

By assumption $QR(\varphi) \leq n$ we get $QR(\psi) \leq n - 1$.

The following are equivalent:

1. $(\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r) \models \varphi$
2. For all $a \in A$ holds $(\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) \models \psi$
3. For all $a \in A$ there exists $h \in I_{n-1}$ so that $g \subseteq h$, $a \in \text{dom}(h)$ and $(\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) \models \psi$
4. For all $a \in A$ there exists $h \in I_{n-1}$ so that $g \subseteq h$, $a \in \text{dom}(h)$ and $(\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) \models \psi$
5. For all $b \in B$ there exists $h \in I_{n-1}$ so that $g \subseteq h$, $b \in \text{rg}(h)$ and $(\mathcal{B}, x_1 : g(a_1), \ldots, x_r : g(a_r), x_{r+1} : b) \models \varphi$
6. For all $b \in B$ there exists $h \in I_{n-1}$ so that $g \subseteq h$, $b \in \text{rg}(h)$ and $(\mathcal{B}, x_1 : g(a_1), \ldots, x_r : g(a_r), x_{r+1} : b) \models \psi$
Let \(\varphi \) be \(\forall x_{r+1} \psi \).

By assumption \(QR(\varphi) \leq n \) we get \(QR(\psi) \leq n - 1 \).

The following are equivalent:

- \((\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r) \models \varphi \)
- For all \(a \in A \) holds \((\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) \models \psi \)
- For all \(a \in A \) there exists \(h \in l_{n-1} \) so that \(g \subseteq h \), \(a \in \text{dom}(h) \) and \((\mathcal{A}, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) \models \psi \)
- For all \(a \in A \) there exists \(h \in l_{n-1} \) so that \(g \subseteq h \), \(a \in \text{dom}(h) \) and \((\mathcal{B}, x_1 : g(a_1), \ldots, x_r : g(a_r), x_{r+1} : h(a)) \models \psi \)
- For all \(b \in B \) there exists \(h \in l_{n-1} \) so that \(g \subseteq h \), \(b \in \text{rg}(h) \) and \((\mathcal{B}, x_1 : g(a_1), \ldots, x_r : g(a_r), x_{r+1} : b) \models \psi \)
- For all \(b \in B \) holds \((\mathcal{B}, x_1 : g(a_1), \ldots, x_r : g(a_r), x_{r+1} : b) \models \psi \)
Let φ be $\forall x_{r+1} \psi$

By assumption $QR(\varphi) \leq n$ we get $QR(\psi) \leq n - 1$.

The following are equivalent:

- $(A, x_1 : a_1, \ldots, x_r : a_r) \models \varphi$
- For all $a \in A$ holds $(A, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) \models \psi$
- For all $a \in A$ there exists $h \in I_{n-1}$ so that $g \subseteq h$, $a \in \text{dom}(h)$ and $(A, x_1 : a_1, \ldots, x_r : a_r, x_{r+1} : a) \models \psi$
- For all $a \in A$ there exists $h \in I_{n-1}$ so that $g \subseteq h$, $a \in \text{dom}(h)$ and $(B, x_1 : g(a_1), \ldots, x_r : g(a_r), x_{r+1} : h(a)) \models \psi$
- For all $b \in B$ there exists $h \in I_{n-1}$ so that $g \subseteq h$, $b \in \text{rg}(h)$ and $(B, x_1 : g(a_1), \ldots, x_r : g(a_r), x_{r+1} : b) \models \psi$
- For all $b \in B$ holds $(B, x_1 : g(a_1), \ldots, x_r : g(a_r), x_{r+1} : b) \models \psi$
- $(B, x_1 : g(a_1), \ldots, x_r : g(a_r)) \models \varphi$.
Fakt

If \mathcal{A}, \mathcal{B} are two finite linear orders of cardinalities $\geq 2^m$, then $\mathcal{A} \equiv_m \mathcal{B}$.
Proof

Without loss of generality let ...
Proof

Without loss of generality let

- \(A = \{0, \ldots, N\} \),
Proof

Without loss of generality let

- \(A = \{0, \ldots, N\} \),
- \(B = \{0, \ldots, M\} \),
Proof

Without loss of generality let

- $A = \{0, \ldots, N\}$,
- $B = \{0, \ldots, M\}$,
- $2^m < N \leq M$.
Without loss of generality let

- \(A = \{0, \ldots, N\} \),
- \(B = \{0, \ldots, M\} \),
- \(2^m < N \leq M \).

Wykazujemy, że \(A \approx_m B \).
Without loss of generality let

- \(A = \{0, \ldots, N\} \),
- \(B = \{0, \ldots, M\} \),
- \(2^m < N \leq M \).

Wykazujemy, że \(A \cong_m B \).

For \(k \leq m \) we define “distance” \(d_k \) between elements by

\[
d_k(a, b) = \begin{cases}
|b - a| & \text{if } |b - a| < 2^k \\
\infty & \text{otherwise}
\end{cases}
\]
Proof

Without loss of generality let

- $A = \{0, \ldots, N\}$,
- $B = \{0, \ldots, M\}$,
- $2^m < N \leq M$.

Wykazujemy, że $\mathcal{A} \cong_m \mathcal{B}$.
For $k \leq m$ we define “distance” d_k between elements by

$$d_k(a, b) = \begin{cases} |b - a| & \text{if } |b - a| < 2^k \\ \infty & \text{otherwise} \end{cases}$$

Now see blackboard.
The Ehrenfeucht Game $G_m(A, B)$ is played by two players: I and II (Spoiler and Duplicator, Adam and Eve, Samson and Delilah, ...)

In the i-th round ($i = 1, \ldots, m$) the players make their moves:

Player I chooses:
- one of the structures
- an element of its universe (denoted a_i if from A, b_i if from B)

Player II chooses:
- the other structure
- an element of its universe (denoted a_i if from A, b_i if from B)

Σ – relational signature
A, B – structures over Σ, additionally $A \cap B = \emptyset$.

The Ehrenfeuchta Game $G_m(\mathcal{A}, \mathcal{B})$ is played by two players: I and II (Spoiler and Duplicator, Adam and Eve, Samson and Delilah, ...)

Σ – relational signature
\mathcal{A}, \mathcal{B} – structures over Σ, additionally $A \cap B = \emptyset$.
The Ehrenfeucht Game $G_m(\mathcal{A}, \mathcal{B})$ is played by two players: I and II (Spoiler and Duplicator, Adam and Eve, Samson and Delilah, . . .)

The game lasts for m rounds
Σ – relational signature
\(\mathfrak{A}, \mathfrak{B} \) – structures over \(\Sigma \), additionally \(A \cap B = \emptyset \).

The Ehrenfeuchta Game \(G_m(\mathfrak{A}, \mathfrak{B}) \) is played by two players: I and II (Spoiler and Duplicator, Adam and Eve, Samson and Delilah, . . .)
The game lasts for \(m \) rounds
In the \(i \)-th round (\(i = 1, \ldots, m \)) the players make their moves:
Ehrenfeuchta Game

Σ – relational signature
\mathcal{A}, \mathcal{B} – structures over Σ, additionally $A \cap B = \emptyset$.

The Ehrenfeuchta Game $G_m(\mathcal{A}, \mathcal{B})$ is played by two players: I and II (Spoiler and Duplicator, Adam and Eve, Samson and Delilah, . . .)
The game lasts for m rounds
In the i-th round ($i = 1, \ldots, m$) the players make their moves:
- Player I chooses:
Ehrenfeuchta Game

Σ – relational signature
\mathcal{A}, \mathcal{B} – structures over Σ, additionally $A \cap B = \emptyset$.

The Ehrenfeuchta Game $G_m(\mathcal{A}, \mathcal{B})$ is played by two players: I and II (Spoiler and Duplicator, Adam and Eve, Samson and Delilah, . . .)

The game lasts for m rounds

In the i-th round ($i = 1, \ldots, m$) the players make their moves:

- Player I chooses:
 - one of the structures
 - an element of its universe (denoted a_i if from A, b_i if from B)
Σ – relational signature
A, B – structures over Σ, additionally $A \cap B = \emptyset$.

The Ehrenfeuchta Game $G_m(A, B)$ is played by two players: I and II (Spoiler and Duplicator, Adam and Eve, Samson and Delilah, ...)
The game lasts for m rounds
In the i-th round ($i = 1, \ldots, m$) the players make their moves:
 * Player I chooses:
 * one of the structures
 * an element of its universe (denoted a_i if from A, b_i if from B)
 * Player II chooses
Ehrenfeuchtta Game

Σ – relational signature
\mathcal{A}, \mathcal{B} – structures over Σ, additionally $A \cap B = \emptyset$.

The Ehrenfeuchtta Game $G_m(\mathcal{A}, \mathcal{B})$ is played by two players: I and II (Spoiler and Duplicator, Adam and Eve, Samson and Delilah, . . .)
The game lasts for m rounds
In the i-th round ($i = 1, \ldots, m$) the players make their moves:
- Player I chooses:
 - one of the structures
 - an element of its universe (denoted a_i if from A, b_i if from B)
- Player II chooses
 - teh other structure
 - an element of its universe (denoted a_i if from A, b_i if from B)
And the winner is.

In the round the chosen elements are \(a_1, \ldots, a_m \in A\) and \(b_1, \ldots, b_m \in B\).

Player II wins if the mapping \(h = \{\langle a_i, b_i \rangle | i = 1, \ldots, m\}\) is a partial isomorphism from \(A\) to \(B\).

Otherwise Player I wins.

Player II has a winning strategy in \(G_m(A, B)\), if he/she can win any play, irrespective of the moves of Player I.
In the m rounds the chosen elements are $a_1, \ldots, a_m \in A$ and $b_1, \ldots, b_m \in B.$
In the m rounds the chosen elements are $a_1, \ldots, a_m \in A$ and $b_1, \ldots, b_m \in B$.

Player II wins if the mapping

$$h = \{ \langle a_i, b_i \rangle \mid i = 1, \ldots, m \}$$

is a partial isomorphism from A to B.
In the m rounds the chosen elements are $a_1, \ldots, a_m \in A$ and $b_1, \ldots, b_m \in B$.

Player II wins if the mapping

$$h = \{ \langle a_i, b_i \rangle \mid i = 1, \ldots, m \}$$

is a partial isomorphism from \mathbb{A} to \mathbb{B}. Otherwise Player I wins.
In the m rounds the chosen elements are $a_1, \ldots, a_m \in A$ and $b_1, \ldots, b_m \in B$.

Player II wins if the mapping

$$h = \{ \langle a_i, b_i \rangle \mid i = 1, \ldots, m \}$$

is a partial isomorphism from A to B. Otherwise Player I wins.

Player II has a winning strategy in $G_m(A, B)$, if he/she can win any play, irrespectively of the moves of Player I.
Theorem [Ehrenfeucht]

Player I has a winning strategy in $G(A, B)$ if and only if $A \sim_m B$.

Player I has a winning strategy in $G_m(A, B)$ for each m if and only if $A \sim_n B$.
Theorem [Ehrenfeucht]

- Player II has a winning strategy in $G_m(\mathcal{A}, \mathcal{B})$ if and only if $\mathcal{A} \equiv_m \mathcal{B}$.

Theorem [Ehrenfeucht]

- Player II has a winning strategy in $G_m(\mathcal{A}, \mathcal{B})$ if and only if $\mathcal{A} \cong_m \mathcal{B}$.
- Player II has a winning strategy in $G_m(\mathcal{A}, \mathcal{B})$ for each m if and only if $\mathcal{A} \cong_{fin} \mathcal{B}$.
The following graphs can be distinguished by a sentence of quantifier rank 4, but rank 3 is not sufficient.
The following graphs can be distinguished by a sentence of quantifier rank 4, but rank 3 is not sufficient.

```
<table>
<thead>
<tr>
<th>*</th>
<th>*</th>
<th>*</th>
<th>*</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>-</em>**</td>
<td><em>-</em>**</td>
<td><em>-</em>**</td>
<td><em>-</em>**</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th><em>-</em>**</th>
<th><em>-</em>**</th>
<th><em>-</em>**</th>
<th><em>-</em>**</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
```
Theorem If \(\mathcal{A} = \langle A, \leq^A \rangle \) and \(\mathcal{B} = \langle B, \leq^B \rangle \) are both linear orders without maximal and minimal elements then \(\mathcal{A} \equiv \mathcal{B} \).

Proof: See blackboard
Theorem If $\mathcal{A} = \langle A, \leq^A \rangle$ and $\mathcal{B} = \langle B, \leq^B \rangle$ are both linear orders without maximal and minimal elements then $\mathcal{A} \equiv \mathcal{B}$.

Proof: See blackboard.
Theorem If $\mathcal{A} = \langle A, \leq^A \rangle$ and $\mathcal{B} = \langle B, \leq^B \rangle$ are both
- linear orders
- dense
Theorem If $\mathcal{A} = \langle A, \leq^A \rangle$ and $\mathcal{B} = \langle B, \leq^B \rangle$ are both
- linear orders
- dense
- without maximal and minimal elements
Theorem: If $\mathcal{A} = \langle A, \leq^A \rangle$ and $\mathcal{B} = \langle B, \leq^B \rangle$ are both linear orders, dense, and without maximal and minimal elements, then $\mathcal{A} \equiv \mathcal{B}$.

Proof: See blackboard.
Theorem If \(\mathcal{A} = \langle A, \leq^A \rangle \) and \(\mathcal{B} = \langle B, \leq^B \rangle \) are both linear orders, dense, without maximal and minimal elements, then
\(\mathcal{A} \equiv \mathcal{B} \).
Theorem If $\mathcal{A} = \langle A, \leq^\mathcal{A} \rangle$ and $\mathcal{B} = \langle B, \leq^\mathcal{B} \rangle$ are both linear orders
- dense
- without maximal and minimal elements

then

$\mathcal{A} \equiv \mathcal{B}$.

Proof: See blackboard
There is no sentence of first-order logic which distinguishes continuous linear orders from noncontinuous ones.

\[\langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle.\]
Corollary

\[\langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle. \]

There is no sentence of first-order logic which distinguishes continuous linear orders from noncontinuous ones.
Theories complete theories

Theory is a set of sentences closed under semantical consequence, i.e., set Δ such that $\Delta |\models \varphi$ holds only when $\varphi \in \Delta$.

Examples of theories:

$\{ \varphi \mid \Gamma \models \varphi \}$, called an axiomatic theory

$\text{Th}(K) = \{ \varphi \mid A |\models \varphi, \text{ dla } A \in K \}$ (theory of a class K of structures)

$\text{Th}(A) = \{ \varphi \mid A |\models \varphi \}$ (theory of a model A).
Theory is a set of sentences closed under semantical consequence, i.e., set Δ such that $\Delta \models \varphi$ holds only when $\varphi \in \Delta$.
Theory is a set of sentences closed under semantical consequence, i.e., set Δ such that $\Delta \models \varphi$ holds only when $\varphi \in \Delta$.

Examples of theories:
Theories complete theories

Theory is a set of sentences closed under semantical consequence, i.e., set Δ such that $\Delta \models \varphi$ holds only when $\varphi \in \Delta$.

Examples of theories:

- $\{ \varphi \mid \Gamma \models \varphi \}$, called an axiomatic theory with axioms Γ
Theory is a set of sentences closed under semantical consequence, i.e., set Δ such that $\Delta \models \varphi$ holds only when $\varphi \in \Delta$.

Examples of theories:

- $\{ \varphi \mid \Gamma \models \varphi \}$, called an *axiomatic theory* with axioms Γ
- $\text{Th}(\mathcal{K}) = \{ \varphi \mid \mathcal{A} \models \varphi, \text{ dla każdego } \mathcal{A} \in \mathcal{K} \}$ (theory of a class K of structures)
Theories complete theories

Theory is a set of sentences closed under semantical consequence, i.e., set Δ such that $\Delta \models \varphi$ holds only when $\varphi \in \Delta$.

Examples of theories:

- $\{\varphi \mid \Gamma \models \varphi\}$, called an axiomatic theory with axioms Γ
- $\text{Th}(\mathcal{K}) = \{\varphi \mid \mathcal{A} \models \varphi\}$, dla każdego $\mathcal{A} \in \mathcal{K}$ (theory of a class K of structures)
- $\text{Th}(\mathcal{A}) = \{\varphi \mid \mathcal{A} \models \varphi\}$ (theory of a model \mathcal{A}).
A theory Δ is called complete, if for every sentence ϕ, exactly one of ϕ and $\neg \phi$ belongs to Δ. The theory of a model is always complete, axiomatic theories and theories of classes of structures may, but not need be complete.

Corollary (of the last theorem) The theory of the class A of all dense linear orders without maximum and minimum is complete.
A theory Δ is called **complete**, if for every sentence φ, exactly one of φ and $\neg \varphi$ belongs to Δ.
A theory Δ is called complete, if for every sentence φ, exactly one of φ and $\neg\varphi$ belongs to Δ.

Theorey of a model is always complete, axiomatic theories and theories of classes of structure may, but not need be complete.
A theory Δ is called **complete**, if for every sentence φ, exactly one of φ and $\neg \varphi$ belongs to Δ.

Theory of a model is always complete, axiomatic theories and theories of classes of structure may, but not need be complete.

Corollary (of the last theorem) Theore of the class \mathcal{A} of all dense linear orders without maximum and minimum is complete