\(\mathrm{nwd}^{\mathbb{A}}(m,n)=\text{najwi"ekszy wsp"olny dzielnik $m$ i $n$,}\)\(m\) i \(n\),
zaś \(1^{\mathbb{A}}\) to zwykła jedynka.
Napisać formułę \(\varphi(x)\) nad \(\Sigma\) definiującą własność ,,być kwadratem liczby pierwszej”, tj., taką, że dla wszystkich wartościowań \(v:X\to\omega\)
\(\mathbb{X}\models\varphi[v]\ \ \text{wtw}\ \ \text{$v(x)$ jest kwadratem liczby pierwszej.}\)\(v(x)\) jest kwadratem liczby pierwszej.
\(\beta^{\mathbb{X}}(t,p)=\text{$\beta$}(t,p),\)
gdzie \(\beta\) to funkcja beta Gödla, znana z wykładu, zaś \(+^{\mathbb{X}},0^{\mathbb{X}},1^{\mathbb{X}}\) to zwykłe dodawanie, 0 i 1.
Napisać formułę \(\varphi(x,y,z)\) nad \(\Sigma\) definiującą mnożenie, tj., taką, że dla wszystkich wartościowań \(v:X\to\omega\)
\(\mathbb{X}\models\varphi[v]\ \ \text{wtw}\ \ v(x)*v(y)=v(z).\)
\(\displaystyle S^{\mathbb{Y}}(n) =n+1\) S Y n = + n 1 \(\displaystyle \beta^{\mathbb{Y}}(t,p) =\text{$\beta$}(t,p),\)\(\beta\) t p β Y t p = β t p
gdzie \(\beta\) to funkcja beta Gödla, znana z wykładu.
Napisać formułę \(\varphi(x,y,z)\) nad \(\Sigma\) definiującą dodawanie, tj., taką, że dla wszystkich wartościowań \(v:X\to\omega\)
\(\mathbb{Y}\models\varphi[v]\ \ \text{wtw}\ \ v(x)+v(y)=v(z).\)
Napisać zdanie pierwszego rzędu \(\varphi\) nad \(\Sigma\) takie, że \(\mathbb{R}_{A}\models\varphi\) wtw \(A\) jest zbiorem domkniętym.
Podać taki przykład aksjomatyzowalnej klasy \(\mathcal{A}\) nad sygnaturą \(\Sigma\) (którą też można sobie wybrać), że \(Mod(\Sigma)\setminus\mathcal{A}\) nie jest aksjomatyzowalna.
Przypuśćmy, że \(E\) jest zbiorem równości normalnych, oraz że \(E\vdash _{{eq}}s=t.\) Udowodnić, że \(s=t\) też jest równością normalną.
\(\forall x\forall y\,(y=f(g(x))\to(\exists u\,(u=f(x)\land y=g(u))))\)
oraz niech \(\psi\) będzie zdaniem
\(\forall x\,[f(g(f(x)))=g(f(f(x)))].\)
Czy \(\{\psi\}\models\varphi?\)
\(f^{\mathbb{A}}(m,n)=m\;\;(\textrm{mod}n)=\text{reszta z dzielenia $m$ przez $n$},\)\(m\) przez \(n\)
przy czym przyjmujemy, że \(m\;\;(\textrm{mod}0)=m\) dla każdego \(m.\)
Udowodnić, że w tej algebrze są tylko dwie kongruencje.
[Szkic dowodu: Niech \(\sim\) będzie kongruencją.
(*) Jeśli \(m\sim n\) dla pewnych \(0< m< n,\) to wtedy \(m=m\;\;(\textrm{mod}n)\sim n\;\;(\textrm{mod}n)=0,\) więc \(m,n\) są kongruentne z \(0.\)
(**) Jeśli \(m\sim 0\) dla pewnego \(m>0,\) to dla każdego \(0< i< m\) mamy \(i=(m+i)\;\;(\textrm{mod}m)\sim m+i\;\;(\textrm{mod}0)=m+i,\) więc \(i\sim 0\) na mocy (*).
(***) Jeśli \(m\sim 0\) dla pewnego \(m>0,\) to dla każdego \(n>m\) mamy \(n=n\;\;(\textrm{mod}0)\sim n\;\;(\textrm{mod}m)< m< n,\) więc \(n\sim 0\) na mocy (*).
(****) Jeśli teraz \(m\sim n\) dla pewnych \(m\neq n,\) to albo jedno z \(m,n\) jest zerem i na mocy (**) i (***) wszystkie liczby są kongruentne z \(0,\) albo \(m,n\) są niezerowe, ale wtedy na mocy (*) \(m\sim 0\) i znowu jesteśmy w przypadku poprzednim.
Szkoda by mi było wyrzucić to zadanie, ale chyba jest za trudne.]
Wykorzystując przestrzenie liniowe nad ciałem \(\mathbb{R}\) jako przykład, udowodnić, że może istnieć wiele różnych kongruencji P\(\bar{r},\) rozszerzających daną relację równoważności \(r\) w \(G.\)
Czas na rozwiązanie zadań to 3 godziny od chwili ich rozdania. Wolno używać dowolnych notatek i podręczników, natomiast nie wolno ściągać. Osoby złapane na ściąganiu będziemy usuwać z egzaminu.
Wszystkie zadania są oceniane w skali 0-1-2 punkty. Na piątkę wystarcza 7 punktów, na czwórkę 5 punktów, a na trójkę 4 punkty. Każdej osobie, kóra odda więcej niż cztery zadania, do wyniku zostaną policzone najsłabsze cztery spośród nich, tak więc nie opłaca się oddawać więcej niż czterech zadań.
Każde zadanie proszę napisać na osobnej kartce, podpianej imieniem, nazwiskiem i numerem indeksu.
Oceny z egzaminu zostaną wpisane tylko tym studentom, którzy dostarczą indeks z wpisanym zaliczeniem z ćwiczeń.