O zadaniach. Zadania są podzielone na kilka grup. Niektóre zadania są dosyć trudne. Pewne zadania powtarzają się w kilku grupach, aby zachęcić studentów do rozwiązania ich różnymi metodami.
Przy niektórych zadaniach (z działów ,,Tw. o zwartości” i ,,Tw. Skolema-Löwenheima”) należy się posłużyć pełną wersją twierdzenia Skolema-Löwenheima poniżej, która zostanie podana na najbliższym wykładzie:
Jeśli \(\Delta\) jest zbiorem zdań nad sygnaturą \(\Sigma\) który ma nieskończony model, to \(\Delta\) ma model dowolnej mocy \(\mathfrak{m}\geq|\Sigma|.\)
Formalizowanie zadanych własności. Spektrum \(Spec(\varphi)\) zdania \(\varphi\) to zbiór wszystkich liczb naturalnych \(n\) takich, ze \(\varphi\) ma model o mocy \(n.\) Standardowy model arytmetyki to struktura \(\mathbb{N}=\langle\omega,*^{\mathbb{N}},+^{\mathbb{N}},0^{\mathbb{N}},1^{\mathbb{N}},\leq^{\mathbb{N}}\rangle.\)
- Podać przykład zdania \(\varphi\) (sygnatura też jest do wyboru) takiego, że \(Spec(\varphi)=Spec(\lnot\varphi).\)
- Podać przykład zdania \(\varphi\) (sygnatura też jest do wyboru) takiego, że \(Spec(\varphi)=\{ n^{2}~/~n\in\mathbb{N}\}.\)
- Podać przykład zdania \(\varphi\) (sygnatura też jest do wyboru) takiego, że \(Spec(\varphi)=\{ 2*n~/~n\in\mathbb{N}\}.\)
- Podać przykład zdania \(\varphi\) (sygnatura też jest do wyboru) takiego, że \(Spec(\varphi)=\{ n~/~n\in\mathbb{N}\ \text{i $n$ jest liczb"a z"lo"ron"a}\}.\)\(n\) jest liczbą złożoną}.
- Podać przykład zdania \(\varphi\) (sygnatura też jest do wyboru) takiego, że \(Spec(\varphi)=\{ 2^{n}~/~n\in\mathbb{N}\}.\)
- Podać przykład zdania \(\varphi\) (sygnatura też jest do wyboru) takiego, że dla każdego naturalnego \(n,\) \(\varphi\) ma dokładnie \(n\) nieizomorficznych modeli mocy \(n.\)
- Podać przykład zdania \(\varphi\) (sygnatura też jest do wyboru) takiego, że dla każdego naturalnego \(n,\) \(\varphi\) ma dokładnie \(2^{n}\) nieizomorficznych modeli mocy \(n.\)
- Podać przykład zdania \(\varphi\) (sygnatura też jest do wyboru) takiego, że dla każdego naturalnego \(n,\) \(\varphi\) ma dokładnie \(n!\) nieizomorficznych modeli mocy \(n.\)
- Dla ustalonego \(k\in\mathbb{N},\) podać przykład zdania \(\varphi\) (sygnatura też jest do wyboru) takiego, że dla każdego naturalnego \(n,\) \(\varphi\) ma dokładnie \({n \choose k}\) nieizomorficznych modeli mocy \(n.\)
- Dla ustalonego \(k\in\mathbb{N},\) podać przykład zdania \(\varphi\) (sygnatura też jest do wyboru) takiego, że dla każdego naturalnego \(n,\) \(\varphi\) ma dokładnie \(n^{k}\) nieizomorficznych modeli mocy \(n.\)
- Znaleźć formułę \(\varphi(x,y)\) stwierdzającą w standardowym modelu arytmetyki, że \(x\) jest względnie pierwsze z \(y.\)
- Znaleźć formułę \(\varphi(x,y,z)\) stwierdzającą w standardowym modelu arytmetyki, że \(z\) jest największym wspólnym dzielnikiem \(x\) i \(y.\)
- Znaleźć formułę \(\varphi(x,y,z)\) stwierdzającą w standardowym modelu arytmetyki, że \(y\) jest największą liczbą, będącą potęgą liczby pierwszej, która dzieli \(x.\)
Szukanie modeli dla zadanych formuł. W zadaniach ,,Pokazać, że zbiór zdań \(\Delta\) jest niezależny”, należy za każdym razem udowodnić, że dla każdego \(\varphi\in\Delta,\) \(\Delta\setminus\{\varphi\}\not\models\varphi,\) poprzez wskazanie modelu \(\Delta\setminus\{\varphi\},\) który nie jest modelem \(\varphi.\)
- Pokazać, że zbiór aksjomatów relacji równoważności
\(\left\{\begin{array}[]{c}\forall x\forall y(Exy\to Eyx)\\ \forall x\ Exx\\ \forall x\forall y\forall z((Exy\land Eyz)\to Exz)\end{array}\right\}\)
jest niezależny.
-
Pokazać, że zbiór aksjomatów liniowych porządków
\(\left\{\begin{array}[]{c}\forall x\forall y((x\leq y)\lor(y\leq x))\\ \forall x\forall y((x\leq y\land y\leq x)\to x=y)\\ \forall x\forall y\forall z((x\leq y\land y\leq z)\to x\leq z)\end{array}\right\}\)
jest niezależny.
-
Pokazać, że zbiór aksjomatów teorii grup (w zapisie multiplikatywnym, nad sygnaturą
\(\Sigma^{F}_{{2}}=\{*\},\Sigma^{F}_{0}=\{ 1\}\))
\(\left\{\begin{array}[]{c}\forall x((1*x=x)\land(x*1=x))\\ \forall x\forall y\forall z((x*y)*z=x*(y*z))\\ \forall x\exists y((x*y=1)\land(y*x=1))\end{array}\right\}\)
jest niezależny.
- Pokazać, że zdanie \((\forall x\exists y\ Exy)\to(\exists x\forall y\ Exy)\) nie jest tautologią.
-
Pokazać, że zdanie
\((\forall x\forall y((f(x)=f(y))\to(x=y)))\to(\forall x\exists y(f(y)=x))\)
nie jest tautologią. Czy jego negacja ma model skończony?
-
Pokazać, że zdanie \(\exists x\exists y\exists u\exists v((\lnot u=x)\lor(\lnot v=y))\land(f(x,y)=f(u,v))\) nie jest tautologią. Ile nieizomorficznych modeli skończonych ma to zdanie?
Tw. Fraïssé, gra Ehrenfeuchta.
- Udowodnić, że klasa wszystkich struktur \(\mathbb{A}=\langle A,r^{\mathbb{A}}\rangle,\) gdzie \(r\in\Sigma^{R}_{1}\) oraz takich, że \(|r^{\mathbb{A}}|=|A\setminus r^{\mathbb{A}}|\) nie jest aksjomatyzowalna.
- Udowodnić, że klasa wszystkich struktur \(\mathbb{A}=\langle A,E^{\mathbb{A}}\rangle\) nad sygnaturą składającą się z jednego dwuargumentowego symbolu relacyjnego \(E\) i takich, że \(|\{(a,b)\in A\times A~/~(a,b)\in E^{\mathbb{A}}\}|< |\{(a,b)\in A\times A~/~(a,b)\notin E^{\mathbb{A}}\}|,\) nie jest aksjomatyzowalna.
- Udowodnić, że klasa wszystkich struktur \(\mathbb{A}=\langle A,E^{\mathbb{A}}\rangle\) nad sygnaturą składającą się z jednego dwuargumentowego symbolu relacyjnego \(E\) i takich, że \(E^{\mathbb{A}}\) jest zbiorem skończonym, nie jest definiowalna.
- Pokazać, że klasa wszystkich relacji równoważności, które mają skończenie wiele klas abstrakcji, nie jest aksjomatyzowalna.
Tw. o zwartości.
- Pokazać, że jeśli klasa \(\mathcal{A}\) struktur nad sygnaturą \(\Sigma\) jest aksjomatyzowalna i jej dopełnienie \(Mod(\Sigma)\setminus\mathcal{A}\) struktur sygnatury \(\Sigma,\) ktore nie nalezą do \(\mathcal{A},\) jest aksjomatyzowalne, to obie klasy są w istocie definiowalne.
Wskazówka: Założyć, że pierwsza klasa jest aksjomatyzowalna przez \(\Delta\), a druga przez \(\Delta^{{\prime}},\) ale żaden skończony podzbiór \(\Delta\) nie jest aksjomatyzacją \(\mathcal{A}.\) Pokazać, że \(\Delta\cup\Delta^{{\prime}}\) spełnia założenia tw. o zwartości.
-
Pokazać następujące tw. Robinsona: Jeśli \(\Delta,\Delta^{{\prime}}\) są spełnialnymi zbiorami zdań nad pewną sygnaturą \(\Sigma,\) zaś \(\Delta\cup\Delta^{{\prime}}\) nie jest spełnialny, to istnieje zdanie \(\varphi\) takie, że \(\Delta\models\varphi\) oraz \(\Delta^{{\prime}}\models\lnot\varphi.\)
Wskazówka: Założyć, że dla każdego \(\varphi\) takiego, że \(\Delta\models\varphi\) zachodzi \(\Delta^{{\prime}}\not\models\lnot\varphi.\) Pokazć, że w tej sytuacji \(\Delta^{{\prime}}\cup\{\varphi\}\) jest spełnialny, a stąd, że \(\Delta\cup\Delta^{{\prime}}\) spełnia zalożenia tw. o zwartości.
- Pokazać, że jeśli \(\Delta\) jest pewnym zbiorem zdań \(\varphi\) takich, że \(Spec(\lnot\varphi)\) jest skończone, oraz \(\Delta\models\psi,\) to także \(Spec(\lnot\psi)\) jest skończone.
- Pokazać, że klasa wszystkich relacji równoważności, które mają skończenie wiele klas abstrakcji, nie jest aksjomatyzowalna.
- Udowodnić, że klasa wszystkich struktur \(\mathbb{A}=\langle A,E^{\mathbb{A}}\rangle\) nad sygnaturą składającą się z jednego dwuargumentowego symbolu relacyjnego \(E\) i takich, że \(E^{\mathbb{A}}\) jest zbiorem skończonym, nie jest aksjomatyzowalna.
- Pokazać, że klasa wszystkich algebr \(\mathbb{A}=\langle A,f^{\mathbb{A}}\rangle,\) gdzie \(f\) jest symbolem jednoragumentowej funkcji, oraz takich, że \(|\vec{f}(A)|< |A|\) nie jest aksjomatyzowalna.
- Udowodnić, że klasa wszystkich struktur \(\mathbb{A}=\langle A,E^{\mathbb{A}}\rangle\) nad sygnaturą składającą się z jednego dwuargumentowego symbolu relacyjnego \(E\) i takich, że \(|\{(a,b)\in A\times A~/~(a,b)\in E^{\mathbb{A}}\}|< |\{(a,b)\in A\times A~/~(a,b)\notin E^{\mathbb{A}}\}|,\) nie jest aksjomatyzowalna.
- Udowodnić, że klasa wszystkich struktur \(\mathbb{A}=\langle A,r^{\mathbb{A}}\rangle,\) gdzie \(r\in\Sigma^{R}_{1}\) oraz takich, że \(|r^{\mathbb{A}}|=|A\setminus r^{\mathbb{A}}|\) nie jest aksjomatyzowalna.
Tw. Skolema-Löwenheima.
- Udowodnić, że klasa wszystkich struktur \(\mathbb{A}=\langle A,r^{\mathbb{A}}\rangle,\) gdzie \(r\in\Sigma^{R}_{1}\) oraz takich, że \(|r^{\mathbb{A}}|=2^{{|A\setminus r^{\mathbb{A}}|}}\) nie jest aksjomatyzowalna.
- Udowodnić, że klasa wszystkich struktur izomorficznych do struktury postaci \(\mathbb{A}=\langle\mathcal{P}(A),\cup^{\mathbb{A}},\cap^{\mathbb{A}},\subseteq^{\mathbb{A}}\rangle,\) gdzie \(\cup^{\mathbb{A}},\cap^{\mathbb{A}}\) oraz \(\subseteq^{\mathbb{A}}\) są odpowiednio prawdziwymi sumą, przecięciem i zawieraniem zbiorów, nie jest aksjomatyzowalna.
- Udowodnić następujące tw. Hessenberga: Dla każdej nieskończonej mocy \(\mathfrak{m}\) zachodzi \(\mathfrak{m}^{2}=\mathfrak{m}.\)
Wskazówka: Napisać zdanie pierwszego rzędu, z którego wynika, że uniwersum modelu jest mocy nie mniejszej niż moc jego kartezjańskiego kwadratu. Pokazać, że zdanie to ma model nieskończony i skorzystać z tw. Skolema-Löwenheima.