Ta struktura danych, wynaleziona przez Fredmana i Tarjana w roku 1984 [FT], stanowi ulepszenie kolejki dwumianowej, które pozwala uzyskać stały (w sensie zamortyzowanym) koszt operacji DecreaseKey, dominującej w algorytmie Dijkstry i jemu pokrewnych. Podstawowy pomysł polega tu na leniwym wykonywaniu operacji, tzn. odkładaniu pracy związanej z zarządzaniem strukturą danych do momentu, kiedy jest to naprawdę niezbędne. Podobnie jak kolejka dwumianowa, kopiec Fibonacciego to lista drzew, z których każde spełnia warunek kopca. Drzewa te nie są już jednak drzewami dwumianowymi (chociaż są im na tyle bliskie, że mają zbliżone własności) i nie są uporządkowane względem stopni korzeni.
Operacja Meld (łączenie kolejek) to po prostu sklejenie dwóch list drzew, bez prób porządkowania względem stopni korzeni czy eliminacji powtórzeń. Jej koszt to oczywiście O(1). Tak jak poprzednio, Insert stanowi szczególny przypadek Meld (łączenie z kolejką jednoelementową). Podczas operacji DelMin przychodzi czas na wykonanie odkładanej wcześniej pracy. Najpierw usuwany jest korzeń zawierający najmniejszy klucz, a jego synowie są dołączani do listy korzeni. Następnie odbywa się konsolidacja listy drzew, mająca na celu doprowadzenie do sytuacji, w której wszystkie korzenie na liście będą miały różne stopnie. Polega ona na przejściu przez listę korzeni i łączeniu drzew jednakowego stopnia - tak samo, jak łączyło się drzewa dwumianowe - a przy okazji uaktualnieniu wskaźnika do korzenia zawierającego najmniejszy klucz. Można ją zrealizować w czasie proporcjonalnym do liczby konsolidowanych drzew, jeśli skorzystamy z pomocniczej tablicy indeksowanej stopniami korzeni: pod indeksem i przechowujemy w niej wskaźnik do (jedynego) korzenia stopnia i w przetworzonej części listy, albo NULL, jeśli w tym fragmencie listy korzenia o stopniu i nie ma.