\(\def\NN{\mathbb{N}}
\def\RR{\mathbb{R}}
\def\ZZ{\mathbb{Z}}
\def\r{\,r\,}
\def\R{\cal R}
\def\pot#1{{\sf P}(#1)}
\def\la{\langle}
\def\ra{\rangle}
\def\poz{\vphantom{f}}
\def\alz{\aleph_0}
\def\C{{\mathfrak C}}
\def\card#1{\overline{\overline{#1}}}
\)
Dla podanych poniżej \(A\) i \(r\), sprawdź czy \(r\) jest relacją równoważności na \(A\).
Czy częściowy porządek może być relacją równoważności?
Jaka jest najmniejsza i największa (w sensie zawierania) relacja równoważności w danym zbiorze?
Które z następujących relacji to relacje równoważności w \(\RR\)?
Które z następujących relacji to relacje równoważności w zbiorze \(A=\{2,3,4,5\}\)?
A które w zbiorze \(A=\{2,3,4,5,6\}\)?
Czy istnieje relacja równoważności na \(\NN\) która ma:
Niech \(r\) będzie relacją binarną w \(\NN^\NN\) taką, że \(f \r g\) wtedy i tylko wtedy gdy dla każdego \(n \in \NN\) różnica \(f(n) - g(n)\) jest parzysta. Udowodnij, że \(r\) jest relacją równoważności. Jaka jest moc klasy abstrakcji funkcji identycznościowej? Jaka jest moc zbioru wszystkich klas abstrakcji?
Niech \(A\) będzie niepustym zbiorem i niech \(f : A \to A\).
Czy suma, przecięcie i złożenie dwóch relacji równoważności jest zawsze relacją równoważności?
Udowodnij, że dla każdego \(A\) i dowolnej relacji binarnej \(r\) na \(A\) istnieje najmniejsza relacja równoważności zawierająca \(r\).
Niech \(r\) będzie relacją równoważności w zbiorze \(\NN\), i niech \(f : \NN \times\NN \to \pot{\NN}\) będzie taka, że \(f(\la x, y\ra) = [x]_r \cup [y]_r\), dla dowolnych \(x, y \in \NN\). Czy funkcja \(f\) jest różnowartościowa? Czy jest na \(\pot{\NN}\)? Znajdź \(f\poz^{-1}(\{[3]_r\})\) oraz \(f(r)\).
Niech \(\R\) będzie zbiorem wszystkich relacji równoważności w \(\NN\) i niech \(f : \R \to \pot{\NN}\) będzie taka, że \(f(r) = [1]_r\), dla dowolnego \(r \in \R\). Znajdź \(\bigcup_{r\in\R}f(r)\) i \(\bigcap_{r\in\R}f(r)\).
Jaka jest moc zbioru wszystkich relacji równoważności w \(\NN\)?
Czy istnieje taka relacja równoważności \(r\) w zbiorze \(\RR\), w której:
(a) każda klasa abstrakcji jest mocy \(\alz\) oraz \(\card{\RR/r} = \alz\) ?
(b) każda klasa abstrakcji jest mocy \(\alz\) oraz \(\card{\RR/r} = \C\) ?
(c) każda klasa abstrakcji jest mocy \(\C\) oraz \(\card{\RR/r} = \alz\) ?
(d) każda klasa abstrakcji jest mocy \(\C\) oraz \(\card{\RR/r} = \C\) ?