\(\def\NN{\mathbb{N}}
\def\RR{\mathbb{R}}
\def\r{\,r\,}
\def\pot#1{{\sf P}(#1)}
\def\la{\langle}
\def\ra{\rangle}
\def\poz{\vphantom{f}}
\def\alz{\aleph_0}
\def\C{{\mathfrak C}}
\def\card#1{\overline{\overline{#1}}}
\)
Czy zbiór \(\NN^*\) uporządkowany leksykograficznie jest dobrze ufundowany? A zbiór \(\NN^2\)?
Udowodnij, że jeśli \(\la A, \leq_A\ra\) oraz \(\la B, \leq_B\ra\) są dobrze ufundowane i \(A \cap B = \emptyset\) to porządek \(\la A \cup B, \leq\ra\) zdefiniowany następująco
Udowodnij, że jeśli zbiór \(X\) jest co najmniej trzyelementowy i \(\la X, \leq\ra\) jest dobrze uporządkowany (liniowy i dobrze ufundowany) to nie jest gęsty.
Udowodnij, ze jeśli \(f: A \to B\) jest monotoniczną bijekcją pomiedzy dobrymi porządkami \(\la A, \leq_A\ra\) i \(\la B, \leq_B\ra\) to funkcja odwrotna \(f^{-1}\) też jest monotoniczna. Czy założenie, że \(\la A, \leq_A\ra\) i \(\la B, \leq_B\ra\) są dobrymi porządkami jest istotne?
Podaj trzy przykłady dobrych porządków mocy \(\alz\), tak aby żadne dwa nie były ze sobą izomorficzne.
Niech \(A\subseteq\RR\) będzie dobrze uporządkowany przez zwykłą relację nierówności dla liczb rzeczywistych. Udowodnić, że \(A\) jest zbiorem przeliczalnym.
Załóżmy, że \(\la A, \leq_1\ra\) i \(\la A, \leq_2\ra\) są dobrze ufundowane i takie, że \(\leq_1 \cup \leq_2\) jest częściowym porządkiem. Udowodnij, że \(\la A, (\leq_1 \cup \leq_2)\ra\) jest porządkiem dobrze ufundowanym.
Wskazówka: wykorzystaj fakt, że \(\leq_1 \cup \leq_2\) jest przechodnia.
Niech \(\la A, \leq\ra\) będzie zbiorem dobrze ufundowanym, w którym wszystkie antyłańcuchy są skończone. Niech \(\{a_i\}_{i\in\NN}\) będzie dowolnym ciągiem elementów \(A\). Udowodnij, że istnieją takie liczby \(i,j\), że \(i < j\) oraz \(a_i\leq a_j\).
Mówimy, że relacja częściowego porządku \(\leq\) w zbiorze \(A\) jest bardzo dobrym ufundowaniem, jeżeli w każdym ciągu nieskończonym \(\{a_n\}_{n\in\NN}\) można wskazać takie \(i < j\), że \(a_i\leq a_j\). Udowodnij, że jeśli \(A\) jest bardzo dobrze ufundowany przez relację \(\leq\), to każdy ciąg nieskończony w \(A\) ma nieskończony podciąg wstępujący \(a_{i_1}\leq a_{i_2}\leq a_{i_3}\leq \cdots\)