Processing math: 100%

Funkcje trygonometryczne i funkcje cyklometryczne

Funkcje trygonometryczne i funkcje cyklometryczne

Przypomnijmy kilka własności funkcji trygonometrycznych sinus, cosinus, tangens i cotangens. Żadna z nich nie jest różnowartościowa w swojej dziedzinie.

wykresy

Uwaga 2.27.

  • Funkcja f(x)=sinx zacieśniona do przedziału [π2,π2] jest różnowartościowa, ściśle rosnąca.
  • Funkcja f(x)=cosx zacieśniona do przedziału [0,π] jest różnowartościowa, ściśle malejąca.
  • Funkcja f(x)=tgx zacieśniona do przedziału (π2,π2) jest różnowartościowa, ściśle rosnąca.
  • Funkcja f(x)=ctgx zacieśniona do przedziału (0,π) jest różnowartościowa, ściśle malejąca.

wykres x2

Pamiętamy również, że zachodzi

Twierdzenie 2.28. [jedynka trygonometryczna]

Dla dowolnej liczby rzeczywistej x suma kwadratów cosinusa i sinusa jest równa jedności, tzn. xR:cos2x+sin2x=1.

Definicja 2.29.

Funkcję określoną na przedziale [1,1] o wartościach w przedziale [π2,π2], odwrotną do zacieśnienia funkcji sinus do przedziału [π2,π2],nazywamy arcusem sinusem i oznaczamy symbolem xarcsinx.

wykresy

Definicja 2.30

Funkcję określoną na przedziale [1,1] o wartościach w przedziale [0,π], odwrotną do zacieśnienia funkcji cosinus do przedziału [0,π], nazywamy arcusem cosinusem i oznaczamy symbolem xarccosx.

Definicja 2.31.

Funkcję określoną na przedziale (,) o wartościach w przedziale (π2,π2), odwrotną do zacieśnienia funkcji tangens do przedziału (π2,π2), nazywamy arcusem tangensem i oznaczamy symbolem xarctgx.

Definicja 2.32.

Funkcję określoną na przedziale (,) o wartościach w przedziale (0,π), odwrotną do zacieśnienia funkcji cotangens do przedziału (0,π), nazywamy arcusem cotangensem i oznaczamy symbolem xarcctgx.

wykres

Funkcje: arcus sinus, arcus cosinus, arcus tangens i arcus cotangens nazywamy funkcjami cyklometrycznymi.

Uwaga 2.33.

Funkcje arcus sinus i arcus tangens są ściśle rosnące. Funkcje arcus cosinus i arcus cotangens -- ściśle malejące.

Ze wzorów redukcyjnych: sin(π2x)=cosx oraz tg(π2x)=ctgx wynika, że

Uwaga 2.34.

  • Dla dowolnej liczby 1x1 zachodzi równość arccosx=π2+arcsin(x).
  • Dla dowolnej liczby <x< zachodzi równość arcctgx=π2+arctg(x).