Aksjomat wyboru i twierdzenia mu równoważne

Aksjomat wyboru i twierdzenia mu równoważne


Tę część wykładu zaczniemy od przytoczenia aksjomatu wyboru w postaci, w jakiej został wprowadzony w wykładzie 4 "Teoria mnogości ZFC. Operacje na zbiorach".

Aksjomat Wyboru. Następująca formuła jest prawdziwa:

\( \forall x\; ( \emptyset\notin x\land \forall y\forall z\; (z\in x\land y\in x) \Longrightarrow (z=y \lor z\cap y = \emptyset)) \Longrightarrow \exists w \forall v\;(v\in x \Longrightarrow \exists u\;v\cap w=\{u\}). \)

Rysunek 1

Aksjomat ten mówi, że jeśli \( x \) jest rodziną niepustych, parami rozłącznych zbiorów, to istnieje zbiór mający z każdym elementem \( x \) dokładnie jeden element wspólny. Zbiór \( w \), którego istnienie gwarantuje aksjomat wyboru, "wybiera" z każdego elementu rodziny dokładnie jeden element (rysynek 1). Zbiory jako pionowe, nieregularne obszary, zbiór wybierający jako poziomy zbiór przecinający każdy z nich na dokładnie jednym elemencie.

W dalszej części wykładu prezentujemy kilka twierdzeń równoważnych aksjomatowi wyboru. To znaczy, że na gruncie aksjomatyki ZF, bez aksjomatu wyboru, założenie prawdziwości któregokolwiek z tych twierdzeń implikuje prawdziwość aksjomatu wyboru i vice versa. Bardzo istotną częścią dowodów jest wykazanie, że twierdzenia te są dokładnie równoważne aksjomatowi wyboru na gruncie ZF. Na gruncie aksjomatyki ZFC twierdzenia te dają się udowodnić przy użyciu aksjomatu wyboru.

Aby wykazać równoważność między aksjomatem wyboru a poniższymi twierdzeniami, pokażemy, że każde twierdzenie implikuje następne i że ostatnie implikuje aksjomat wyboru. Jest to najprostszy sposób na wykazanie równoważności.

Twierdzenia dotyczące zbiorów

Pierwsze, równoważne aksjomatowi wyboru, twierdzenie mówi o istnieniu funkcji wybierającej. W aksjomacie wyboru, z rodziny zbiorów wybieraliśmy elementy przez utworzenie zbioru. Aby możliwe było wybranie dokładnie jednego elementu z każdego zbioru, niezbędne było założenie o rozłączności tych zbiorów. Poniższe twierdzenie mówi o istnieniu funkcji wybierającej elementy ze zbiorów.

Twierdzenie 3.1.

Dla dowolnej rodziny niepustych zbiorów istnieje funkcja, która każdemu zbiorowi w tej rodzinie przyporządkowuje któryś z jego elementów. Formalnie

\( \forall x\; \emptyset\notin x \Longrightarrow \exists f\; f:x \rightarrow \bigcup x \land( \forall y\; y\in x \Longrightarrow f(y)\in y). \)

Poniżej przedstawiamy dowód, na gruncie ZF, że aksjomat wyboru implikuje powyższe twierdzenie.

Dowód

Aksjomat wyboru implikuje Twierdzenie 3.1 (patrz Twierdzenie 3.1.) Ustalmy dowolny, niezawierający zbioru pustego, zbiór \( x \). Skonstruujemy zbiór \( x_1 \), do którego stosować będziemy aksjomat wyboru. Zbiór

\( x_1 = \{\{y\}\times y\,:\, y\in x\} \)

jest rodziną zbiorów parami rozłącznych - elementy pochodzące z różnych zbiorów \( x \) różnią się w \( x_1 \) na pierwszej współrzędnej. Do zbioru \( x_1 \) stosujemy aksjomat wyboru i otrzymujemy zbiór \( w\subset x\times \bigcup x \). Ponieważ z każdego zbioru \( x_1 \) wybraliśmy dokładnie jeden element, to \( w \) jest funkcją z \( x \) do \( \bigcup x \). Definicja \( x_1 \) gwarantuje również, że \( w(y)\in y \) dla każdego \( y\in x \). Wnioskujemy, że \( w \) może być wzięte jako \( f \) i że aksjomat wyboru implikuje Twierdzenie 3.1 (patrz Twierdzenie 3.1.).

Kolejny fakt, równoważny aksjomatowi wyboru, przedstawiamy w formie ćwiczenia:

Ćwiczenie 3.1

Wykaż, że stwierdzenie "dla każdej surjekcji \( f:x \rightarrow y \) istnieje iniekcja \( g:y \rightarrow
x \) taka, że \( f\circ g \) jest funkcją identycznościową na \( y \)" jest równoważne aksjomatowi wyboru na gruncie ZF.

Twierdzenia dotyczące porządków

Kolejne dwa twierdzenia dotyczą częściowych porządków. Pierwsze z nich gwarantuje istnienie maksymalnych łańcuchów.

Twierdzenie 3.2. [Zasada maksimum Felixa Hausdorff'a]

W każdym zbiorze częściowo uporządkowanym istnieje maksymalny, pod względem inkluzji, łańcuch. Zgodnie z przyjętą strategią postępowania wykażemy, że Twierdzenie 3.1 implikuje zasadę maksimum Felixa Hausdorffa.

Dowód

Twierdzenie 3.1 implikuje zasadę maksimum Felixa Hausdorffa. Dowód tej implikacji opiera się na Twierdzeniu Bourbakiego-Witta z Wykładu 10 (patrz Twierdzenie Bourbakiego-Witta). Ustalmy dowolny zbiór częściowo uporządkowany \( (A,\sqsubseteq) \). Jeśli \( A=\emptyset \), to zbiór ten posiada dokładnie jeden łańcuch i fakt jest dowiedziony. Jeśli \( A\neq\emptyset \), oznaczmy przez \( (B,\subset) \) zbiór częściowo uporządkowany składający się z łańcuchów w \( (A,\sqsubseteq) \) uporządkowanych przez inkluzję

\( B = \{C\subset A\,:\, C \) jest uporządkowany liniowo przez \( \sqsubseteq\}. \)

Zbiór częściowo uporządkowany \( (B,\subset) \) jest łańcuchowo zupełny. Aby to pokazać, ustalmy dowolny, uporządkowany liniowo przez inkluzję zbiór \( D\subset B \). Jeśli \( \bigcup D \) należy do \( B \), to jest to niewątpliwie supremum zbioru \( D \). Aby wykazać, że \( \bigcup D \) jest elementem \( B \), należy wykazać, że jest on uporządkowany liniowo przez \( \sqsubseteq \). Weźmy dwa elementy \( \bigcup D \) - \( x \) i \( y \). Istnieje \( C_x\in D \) i \( C_y\in D \) takie, że \( x\in C_x \), a \( y\in C_y \). Ponieważ \( D \) jest łańcuchem, to, bez straty ogólności, możemy założyć, że \( C_x\subset C_y \). Wtedy, zarówno \( x \) jak i \( y \), należą do \( C_y \) i ponieważ \( C_y\in B \), wnioskujemy, że \( x \) i \( y \) są porównywalne. Wykazaliśmy, że dowolne dwa elementy \( \bigcup D \) są porównywalne, czyli że \( \bigcup D \) jest uporządkowany liniowo przez \( \sqsubseteq \).

Na mocy Twierdzenia 3.1 definiujemy funkcję wyboru \( f \) dla zbioru \( \mathcal{P}(A)\setminus\{\emptyset\} \) zwracającą, dla każdego niepustego podzbioru \( A \), jego element. Twierdzenie Bourbakiego-Witta będziemy stosować do funkcji \( g \) przeprowadzającej \( B \) w \( B \) i zdefiniowanej następująco:

\( g(C)=\left\{\begin{array}{lll} C\cup \{f(C')\}, & \quad \textrm{jeśli } C', \textrm{zbiór elementów porównywalnych z każdym elementem } C, \textrm{jest niepusty} \\ C , & \quad \textrm{w przeciwnym przypadku}. \end{array} \right. \)

Funkcja \( g \) dostaje jako argument łańcuch w \( (A,\sqsubseteq) \) oznaczony przez \( C \) i przy pomocy funkcji \( f \) rozszerza (jeśli jest to możliwe) \( C \) o jeden element porównywalny ze wszystkimi elementami \( C \), otrzymując w ten sposób nowy, większy łańcuch.

Zbiór \( (B,\subset) \) i funkcja \( g \) spełniają założenia Twierdzenia Bourbakiego-Witta i, na jego mocy, istnieje punkt stały \( g \), czyli zbiór \( D \) taki, że \( g(D) = D \). To gwarantuje, że zbiór \( D' \) elementów porównywalnych z każdym elementem \( D \) jest pusty, czyli że \( D \) jest maksymalnym pod względem inkluzji łańcuchem w \( A \).

Równoważną wersję zasady Felixa Hausdorffa pozostawiamy jako ćwiczenie.

Ćwiczenie 3.2

Wykaż, na gruncie ZF, że następujące stwierdzenie jest równoważne zasadzie Felixa Hausdorffa: "W każdym zbiorze częściowo uporządkowanym każdy łańcuch jest zawarty w maksymalnym, pod względem inkluzji, łańcuchu".

Kolejne z równoważnych aksjomatowi wyboru twierdzeń nosi nazwę Lematu Maxa Augusta Zorna. Nazwa ta ma korzenie historyczne i dlatego pozostawiamy ją w tym brzmieniu.

Twierdzenie 3.3. [Lemat Maxa Augusta Zorna]

Jeśli w pewnym zbiorze częściowo uporządkowanym, każdy łańcuch jest ograniczony od góry, to istnieje w nim element maksymalny.

Dowodzimy kolejną implikację

Dowód

Zasada maksimum Felixa Hausdorffa implikuje Lemat Maxa Augusta Zorna. Dowód tej implikacji jest bardzo prosty. Wybierzmy dowolny zbiór częściowo uporządkowany spełniający założenia Lematu Maxa Augusta Zorna, czyli taki, że każdy łańcuch jest w nim ograniczony od góry. Na mocy zasady maksimum Felixa Hausdorffa istnieje w tym zbiorze łańcuch maksymalny pod względem inkluzji. Łańcuch ten posiada ograniczenie górne, które musi być elementem łańcucha i równocześnie elementem maksymalnym zbioru. Jeśliby tak nie było, to dodając element istotnie większy od tego ograniczenia do łańcucha danego przez zasadę maksimum Hausdorffa, uzyskalibyśmy łańcuch istotnie większy pod względem inkluzji.

Kolejne ćwiczenie mówi o istnieniu maksymalnego antyłańcucha.

Ćwiczenie 3.3

Udowodnij, używając lematu Maxa Augusta Zorna, że w każdym zbiorze częściowo uporządkowanym istnieje antyłańcuch maksymalny pod względem inkluzji.

Poniższe ćwiczenie dotyczy rozszerzeń porządków.

Ćwiczenie 3.4

Wykaż, używając lematu Maxa Augusta Zorna, że każdy częściowy porządek da się rozszerzyć do porządku liniowego. To znaczy, że dla każdego zbioru częściowo uporządkowanego \( (A,\sqsubseteq) \) istnieje liniowy porządek \( ≼ \) na \( A \) taki, że

\( x \sqsubseteq y \Longrightarrow x ≼ y. \)

dla dowolnych \( x \) i \( y \) w \( A \).

W Wykładzie 5 "Para uporządkowana, iloczyn kartezjański, relacje, domykanie relacji, relacja równoważności, rozkłady zbiorów" pokazaliśmy, że dla dowolnej relacji istnieje najmniejsza relacja równoważności zawierająca tą relację. W poniższym ćwiczeniu pokażemy, że dla niektórych relacji istnieje maksymalna, pod względem inkluzji, relacja równoważności zawarta w nich

Ćwiczenie 3.5

Użyj lematu Maxa Augusta Zorna, aby wykazać, że dla każdej relacji \( \rho \subset A\times A \), jeśli \( 1_{A}\subset\rho \), to istnieje maksymalna pod względem inkluzji relacja równoważności zawarta w \( \rho \).

Kolejny warunek równoważny dotyczy zbiorów dobrze uporządkowanych.

Twierdzenie Ernsta Zermelo

Twierdzenie Zermelo jest jedną z równoważnych postaci aksjomatu wyboru, w którą wyjątkowo trudno uwierzyć.

Twierdzenie 3.4. [Zermelo]

Dla każdego zbioru istnieje relacja, która jest dobrym porządkiem na tym zbiorze. Kolejny dowód to

Dowód

Lemat Maxa Augusta Zorna implikuje Twierdzenie Ernsta Zermelo. Ustalmy dowolny zbiór niepusty \( A \) (dla zbioru pustego porządek pusty porządkuje go dobrze). Rozważmy zbiór \( B \) składający się z podzbiorów \( A \), które mogą być dobrze uporządkowane, wraz z dobrymi porządkami

\( B = \{(C,\sqsubseteq)\,:\, C\subset A \land \sqsubseteq \) jest dobrym porządkiem na \( C \} \) i zdefiniujmy relację na elementach \( B \) w następujący sposób

\(\begin{array}{ll} \displaystyle (C,\sqsubseteq) ≼ (C',\sqsubseteq') \iff & C\subset C' \land \begin{cases}\forall c \forall d\ (c\in C\land d\in C) \Longrightarrow (c\sqsubseteq d \iff c\sqsubseteq' d) \textrm{ oraz } \\ \forall c \forall d\ (c\in C\land d\in C'\setminus C) \Longrightarrow c\sqsubseteq' d \end{cases} \end{array}\)

czyli dwa elementy \( B \) są porównywalne wtedy i tylko wtedy, jeśli zbiory, na których, są określone są porównywalne w sensie inkluzji i porządek zdefiniowany na większym zbiorze jest rozszerzeniem porządku zdefiniowanego na mniejszym przez dodanie elementów większych od wszystkich zastanych. Aby zastosować Lemat Maxa Augusta Zorna do zbioru częściowo uporządkowanego \( (B, ≼ ) \) musimy wykazać, że każdy łańcuch w tym zbiorze ma ograniczenie górne.

Niech \( D\subset B \) będzie łańcuchem w sensie \( ≼ \). Zdefiniujmy \( C_0 \) jako unię wszystkich pierwszych współrzędnych elementów \( D \) i \( \sqsubseteq_0 \) jako unię drugich współrzędnych elementów \( D \). Niewątpliwie \( C_0\subset A \). Ponieważ \( D \) jest łańcuchem w sensie \( ≼ \), to relacja \( \sqsubseteq_0 \) jest porządkiem liniowym na \( C_0 \). Aby wykazać, że \( \sqsubseteq_0 \) jest dobrym porządkiem na \( C_0 \), ustalmy dowolny \( E\subset C_0 \). Niewątpliwie istnieje element \( (C,\sqsubseteq)\in D \) taki, że \( E\cap C\neq\emptyset \). Ponieważ \( (C,\sqsubseteq)\in B \), to \( C \) jest dobrze uporządkowany przez \( \sqsubseteq \) i w związku z tym \( E\cap C \) posiada element najmniejszy w \( C,\sqsubseteq) \) - oznaczmy go przez \( x \). Element \( x \) będzie również najmniejszym elementem \( E \) w \( C_0 \). Aby to wykazać, ustalmy \( y\in E \). Jeśli \( y\in C \), to niewątpliwie \( x\sqsubseteq y \) i w związku z tym \( x\sqsubseteq_0 y \). Jeśli \( y\notin C \), to \( y \in C'\setminus C \) dla jakiegoś \( (C',\sqsubseteq')\in D \). Ponieważ \( D \) jest łańcuchem wnioskujemy, że \( C\subset C' \) i na mocy definicji \( ≼ \), że \( x\sqsubseteq' y \), czyli \( x\sqsubseteq_0 y \), co należało wykazać.

Stosując Lemat Maxa Augusta Zorna wnioskujemy, że w zbiorze częściowo uporządkowanym \( (B, ≼ ) \) istnieje element maksymalny \( (D,\sqsubseteq) \). Jeśli \( D = A \), to \( \sqsubseteq \) jest wymaganym dobrym porządkiem na \( A \). Aby wykazać, że tak musi być, załóżmy niewprost, że \( D ⊊ A \), czyli że istnieje \( d\in A\setminus D \). Wtedy zbiór \( D\cup\{d\} \) wraz z dobrym porządkiem \( \sqsubseteq' \) zdefiniowanym jako

\( a\sqsubseteq' b \iff b=d \lor (a\in D\land b\in D \land a\sqsubseteq b) \)

jest większy w sensie relacji \( ≼ \), co przeczy maksymalności \( D \). Uzyskana w dowodzie niewprost sprzeczność kończy rozumowanie.

Twierdzenie Ernsta Zermelo jest sprzeczne z intuicją wielu matematyków. Gwarantuje ono między innymi istnienie dobrego porządku na liczbach rzeczywistych, czyli takiego liniowego uporządkowania liczb rzeczywistych, w którym każdy zbiór posiada element najmniejszy. Porządek taki jest trudnym do wyobrażenia konceptem matematycznym.

Aby zamknąć ciąg rozumowań, wystarczy wykazać, że Twierdzenie Zermelo implikuje aksjomat wyboru.

Dowód

Twierdzenie Zermelo implikuje aksjomat wyboru. Niech \( x \) będzie dowolnym zbiorem spełniającym założenia aksjomatu wyboru, to znaczy takim, że \( \emptyset\notin x \) i że wszystkie elementy \( x \) są parami rozłączne. Niech \( \sqsubseteq \) będzie istniejącym, na podstawie Twierdzenia Zermelo, dobrym uporządkowaniem zbioru \( \bigcup x \). Zbiór wybierający po jednym elemencie z każdego elementu \( x \) otrzymujemy, stosując zasadę wycinania do \( \bigcup x \)

\( w = \{y\in\bigcup x\,:\, \exists z\; y\in z\in x \land y \) jest najmniejszym elementem \( z \) względem relacji \( \sqsubseteq\}. \)

Zbiór \( w \) posiada po dokładnie jednym elemencie wspólnym z każdym zbiorem \( z\in x \) - jest to element najmniejszy w \( z \) względem dobrego uporządkowania \( \bigcup x \).

Nasze rozumowanie wykazało, że wszystkie powyższe fakty są równoważne na gruncie ZF. Jak wspomnieliśmy na początku, aksjomat wyboru jest kontrowersyjnym aksjomatem. Niektóre z równoważnych mu stwierdzeń są intuicyjnie oczywiste, inne przeczą intuicji. Podsumujemy rozdział żartem autorstwa Jerrego Bona:

The Axiom of Choice is obviously true; the Well Ordering Principle is obviously false; and who can tell about Max August Zorn's Lemma? (Aksjomat wyboru jest oczywiście prawdziwy; twierdzenie Ernsta Zermelo jest oczywiście fałszem; lemat Zorn'a kto wie?)