Metody optymalizacji
Forma zajęć
Wykład (30 godzin) + laboratorium (30 godzin)
Opis
Celem wykładu jest przedstawienie teoretycznych zagadnień oraz numerycznych algorytmów służących do rozwiązywania zadań optymalizacji statycznej. Omówione będą niezbędne podstawy matematyczne, a następnie wybrane, najczęściej używane algorytmy, służące do rozwiązywania takich zadań. Wykład ostatni jest krótkim wprowadzeniem do zagadnień programowania wielokryterialnego.
Sylabus
Autor
- Adam Woźniak — Politechnika Warszawska
Wymagania wstępne
- Analiza matematyczna
- Algebra liniowa
- Wstęp do programowania
Zawartość
- Przykłady zadań optymalizacji, klasyfikacje zadań optymalizacji
- Wprowadzenie do metod rozwiązywania zadań optymalizacji statycznej
- Podstawowe własności zadania programowania liniowego; metoda simplex
- Podstawy matematycznej analizy nieliniowych zadań optymalizacji statycznej
- Podstawy metod optymalizacji bez ograniczeń
- Metody rozwiązywania zadania poprawy
- Gradientowe algorytmy rozwiązywania zadań optymalizacji bez ograniczeń
- Wpływ ograniczeń na rozwiązanie zadań optymalizacji
- Analiza matematyczna zadań optymalizacji z ograniczeniami
- Metody i algorytmy rozwiązywania zadań optymalizacji z ograniczeniami
- Elementy programowania wielokryterialnego
Moduły